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Chemical shift anisotropy (CSA) is an immensely useful interac-
tion to study the structure, dynamics, and function of a wide variety
of chemical and biological molecules. Traditionally the only unam-
biguous way to determine both the principal values and the orien-
tation of the principal axes of the CSA tensor has been to follow the
chemical shift frequency changes as a crystal of known structure is
rotated relative to the direction of the external magnetic field. This
classic method employs rotations about three mutually orthogonal
axes of a single crystal. It is shown here that just two, or one, of the
above rotations suffice to determine the CSA tensor orientation by
borrowing, the easy to obtain, principal values of CSA from an in-
dependent source. Methods for using two rotation patterns or even
a single rotation pattern are described and illustrated with known
chemical shielding tensors. C© 2002 Elsevier Science (USA)
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INTRODUCTION

The chemical shielding tensor is an experimentally deter-
mined basic NMR parameter and highly valuable in understand-
ing the nature of chemical bonding, structure, dynamics, and
function of chemical and biological molecules (1–8). Its value
lies in its ability to report on local chemical environment that
in turn can be related to molecular conformation. The shield-
ing tensor is a mathematical manifestation of the interaction of
the local current density with an applied magnetic field B0, the
outcome of which presents the immersed nuclear spin a local
magnetic field different from B0. Nuclear spins with different
local current densities, due to the variation in the chemical en-
vironment, thus see different local fields and this results in the
resolution of resonance frequencies. The interaction in general is
anisotropic; i.e., the relative orientation of B0 with respect to the
local molecular geometry influences the resonance frequency.
For example, in powder samples, where all orientational possi-
bilities are realized, the classic powder pattern ensues (1–3). The
interaction is historically known as chemical shift anisotropy
(CSA) (3).

The CSA interaction is a second rank tensor with a nonzero
trace (1–3). It is a symmetric 3 × 3 matrix in the Cartesian repre-
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sentation and has six independent matrix elements. This matrix
can be transformed to a principal axis system (PAS), wherein
the only nonzero elements are the principal values of the tensor
lying on the diagonal. The three Euler angles of an orthogo-
nal transformation and the three principal elements of the CSA
tensor, or equivalently the six independent elements of the non-
diagonal matrix, represent the CSA tensor and its orientation in
the molecular frame.

Though the CSA interaction originates from current densities
in a molecule, it is inaccessible even to X-ray crystallography
that is sensitive to charge densities. The tensor elements or their
various combinations can be obtained from NMR experiments.
For example, common solution NMR experiments report the
isotropic chemical shift, which is equal to one third of the trace
of the tensor matrix in any frame. On the other hand, the princi-
pal elements can be readily and accurately determined from the
positions of the shoulders of the experimental powder pattern
spectrum of a polycrystalline sample obtained using solid-state
NMR methods (2, 3). However, the bounty of choices avail-
able to determine isotropic shifts and principal values drasti-
cally dwindles to a handful of difficult and laborious techniques
when the orientation of the CSA tensor in the molecular frame
is sought. The tensor orientation can be determined from one- or
two-dimensional, static or magic angle spinning (MAS), NMR
experiments of powder samples that convolute, or correlate, CSA
and dipolar interactions (9–16). However, these techniques rely
on favorable sample and experimental conditions and therefore
seldom provide full information about the CSA tensor orienta-
tion. The only method that ensures finding the complete tensor
orientation is the celebrated technique of analyzing single crys-
tal NMR “rotation patterns” (1–3, 17–22). The orientation in
the crystal frame is rigorously determined and, with an X-ray
structure, molecular orientation is determined as well if the unit
cell contains a single molecule (or all molecules in the unit cell,
translations aside, are related by a center of inversion). Other-
wise, assignment of molecular orientations to the structurally
equivalent but magnetically nonequivalent sites requires addi-
tional information. However, single crystal NMR comes with
a price. Even when in possession of high quality crystals, the
method is tedious and very unforgiving to experimental and
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analysis errors. Stringent requirements must be met at every
stage. It involves recording NMR spectra at many orientations
as the crystal is rotated about three mutually perpendicular axes.
The rotation axes should be strictly held orthogonal to B0. It is
also necessary to know the zero or starting points common to
pairs of rotation patterns. With an eye toward one of the most
important applications, namely solid-state NMR of biological
molecules, it must be kept in mind that obtaining large size crys-
tals of biological molecules is difficult. This results in poor signal
to noise ratio spectra increasing experimental uncertainties. Any
means to reduce the length of the procedure immediately trans-
lates into savings in terms of labor, time, and error reduction. It is
also possible to obtain the tensor orientation by a single rotation
about an axis that is not orthogonal to B0 (1). However, this is
not the conventional choice. This may be because of difficulty
of defining such an axis with confidence. The classic method of
three rotations however offers many checks that can be used for
verification of the experimental procedure. For example, there
is at least one orientation for which the spectra are identical for
any pair of the 3 orthogonal rotations. Another check that is
not available to an arbitrary rotation axis is the π periodicity
of the spectra with respect to the rotation angle in the classic
method.

Principal values of the tensor are very easy to determine com-
pared to the characterization of the full tensor, and a crystal
is not needed. Many methods are available to determine the
principal values, the most obvious being reading them off of
a powder spectrum. The sideband analysis of MAS spectra is
another popular method (23). Below we describe a strategy, by
using independently determined principal values of the tensor,
to reduce the number of required rotations in the conventional
method to (1) just two to obtain an unambiguous determination
of the tensor orientation and (2) or even one to obtain four candi-
dates for the tensor orientations. Furthermore, this number can
be reduced with the same approaches used for assigning tensor
molecular orientations to structurally equivalent but magneti-
cally nonequivalent sites.

THEORY

In the Cartesian representation, the shielding tensor is a sym-
metric 3 × 3 matrix and is diagonal in its PAS (frame P). In the
conventional single crystal method of analyzing experimental
rotation patterns about three mutually orthogonal axes, all the
distinct matrix elements (three diagonal and three off-diagonal)
are determined in some well-defined frame (such as a crystal
based orthogonal coordinate system) (2, 3). Let us denote this
shielding tensor in the crystal frame as σ which can be diago-
nalized to obtain σ P by the following unitary transformation

σ = RTσ PR, [1]
where R is an orthogonal transformation between the P and
crystal frames, while RT is its transpose. R can be given in
HY, AND WITTEBORT

terms of Euler angles, � = (α, β, γ ), by

R(�) = Rz(α)Ry(β)Rz(γ ). [2]

Each of the three conventional single crystal rotations yields
two diagonal elements and one off-diagonal element of σ . For
example, rotation about <y| yields values of σX X , σZ Z , and σX Z .
The union of the three sets of matrix elements yields the full σ

matrix, which is diagonalized to yield σ P and R, and therefore
the complete shielding tensor can be characterized in the crystal
frame. On the other hand, if σ P (or the values of the principal
elements σ11, σ22, and σ33) is known then the matrix elements of
σ are functions of the Euler angles (α, β, γ ) only. Therefore, the
task of completely characterizing the shielding tensor is reduced
to determining only the values of these three angles. In this study,
we discuss two independent methods to determine the values of
(α, β, γ ) angles. Examples illustrating the application of these
two methods using reported shielding tensors are presented in
the next section.

Method I

The values of (α, β, γ ) angles can be determined by solving
three equations that are generated from any one of the single
crystal rotation experimental data. However, the equations are
nonlinear and trigonometric in the dependency of the three un-
known parameters. There is no a priori guarantee that solutions
exist for these equations. On the other hand, 4 of the 6 distinct σ

matrix elements (2 diagonal and 2 off diagonal) determined from
two conventional experimental rotation data provide 4 equations
with only 3 unknown parameters; this provides the needed nudge
to get over the mathematical hump to yield the complete ten-
sor. By searching the space of the three Euler angles and using
4 above mentioned equations, we can determine the values of
(α, β, γ ) angles that define the orientation of the shielding tensor
in the molecular frame.

Method II

An algebraic method, in contrast to the Euler angle search
approach used above, is now described. The starting point is the
secular equation which is typically solved for the eigenvalues,
σ PAS

ii .
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= 0, j = 1, 2, 3. [3]

Since the eigenvalues are known here, it can be solved to deter-
mine the values of the unknown off-diagonal elements. Three
simultaneous nonlinear equations are obtained,
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When two off-diagonal elements are known, this approach gives
the same results as the Euler angle search method outlined above,
but involves nothing more than applying the quadratic equa-
tion either 2 or 3 times and choosing the common root. Sub-
sequently, σ is diagonalized to obtain the eigenvectors from
which Euler angles can be determined if desired. To consider
the possibility of reconstructing tensors from rotation about
a single axis, we take (without loss of generality) this axis
as 〈y|. Thus, the known off-diagonal element is σX Z and the
task is to determine σXY and σY Z ; conveniently done using
any of the three possible pairs of Eq. [4] and a standard al-
gorithm for solving simultaneous nonlinear equations (24). In
practice, we find 4 discrete solutions related by symmetries
in their orientations. Defining the eigenvector corresponding
to a particular PAS component as (x, y, z), the four solutions
have vectors of the form (x, y, z), (x, −y, z), (x ′, y, z′), and
(x ′, −y, z′). In some cases, only two solutions with eigen-
vector symmetries (x, y, z), (x, −y, z) are found. Approaches
for selecting the correct orientation are discussed in the next
section.

RESULTS AND DISCUSSION

We now illustrate these two methods with examples. First,
using shielding tensors reported in the literature (18–20) sum-
marized in Table 1, we use the Euler angle search to confirm that,
given a shielding tensor and its eigenvalues, one can uniquely
“reconstruct” the tensor orientation when rotation data from any
2 of the three axes is combined with accurate principal com-
ponents. Next, we discuss approaches for selecting the correct
tensor orientation (of 4 choices) inherent to the reconstruction
based on a single axis rotation.

This Euler angle search method was implemented as a com-
puter algorithm as follows:

1. Orientational space described by the Euler angles was di-

vided into a grid of one-degree intervals with 0 ≤ α ≤ π ,
0 ≤ β ≤ π and 0 ≤ γ ≤ 2π in order to search the orientation
of the tensor

is not uniquely determined (there are four possibilities). Also,
errors in the eigenvalues are propagated into the tensor orienta-
in the crystal frame. The range for the α angle

TABLE 1
Test Shielding Tensors Taken from the Literature

Mol. Site Ref. σxx σxy σxz σyy σyz σzz σ P
xx σ P

yy σ P
zz α, β, γ

Gly C2,1 18 85.8 6.5 −9.8 65.2 4.0 96.1 62.0 83.0 102.0 113, 149, 180
Gly C2,2 18 85.8 −6.5 −9.8 65.2 −4.0 96.1 62.0 83.0 102.0 113, 31, 0
GG C1 19 −29.7 55.7 −38.1 −79.4 −21.0 −14.6 −115.6 −48.6 40.6 87, 52, 328
GG N 19 119.9 −24.9 70.8 50.9 −26.6 94.3 33.0 43.6 188.6 165, 129, 19
Thr C1 20 209.2 47.3 −19.9 127.3 −16.4 173.4 105.0 164.7 240.2 84, 110, 154
Thr C2 20 57.2 −2.8 1.6 64.9 6.6 58.4 52.6 58.9 69.0 144, 120, 261
Thr C3 20 50.7 −14.5 9.1 72.5 9.9 73.0 83.4 74.1 38.8 51, 110, 151

tion and this is discussed below.
Thr C4 20 23.1 0.0 −4.6 23.0

Note. Principal components and Euler angles were accuratel
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was halved because Rz(α + π )Tσ P Rz(α + π ) = Rz(α)Tσ P

Rz(α).
2. At each grid point, R was generated and the similarity

transformation given by Eq. [1] applied to obtain the calculated
shielding matrix, σcalc.

3. The common subset of four elements (2 diagonal and 2 off-
diagonal elements) between the source tensor (constructed using
experimental data) and the calculated tensor was chosen to com-
pute the sum of squares of differences between corresponding
elements.

4. Euler angles corresponding to the minimum sum of squares
of deviations were chosen.

The results obtained from this study are presented in Table 2.
The orientations of CSA tensors obtained from 4 distinct ele-
ments (two rotations in combination with the principal compo-
nents) are as good as the values determined from the conven-
tional three rotation patterns. Even for the worst cases, the C1,
C2, and C4 carbons of L-threonine, orientation of the tensor de-
termined from different combinations of rotation patterns differ
not more than by a couple of degrees. Trigonometric symme-
try of the Euler rotation, Eq. [2], gives two orientations each
for C2 and C4 carbons of L-threonine (within a degree or two
margin mentioned above) which are completely equivalent; i.e.,
the respective tensors in the crystal frame for the two orienta-
tions are identical. Importantly, this shows that the orientations
obtained from all combinations of pairs of rotation experiments
are equivalent, i.e., the procedure is not sensitive to the choice
of the rotation axes.

We now consider the case where the crystal is rotated about
a single axis orthogonal to B0. In addition to further reduc-
ing experimental time, this approach circumvents two technical
problems associated with single crystal studies: inaccuracies as-
sociated with mounting the crystal accurately in 3 orthogonal
orientations and adjusting the NMR coil geometry or size to ac-
commodate arbitrary orientations of crystal morphologies like
needles. The primary disadvantage is that the tensor orientation
13.2 10.5 32.1 23.1 1.4 1, 147, 71

y calculated numerically for each tensor. GG = glygly.



260

Table 3 summa
generated by sing
SHEKAR, RAMAMOORTHY, AND WITTEBORT

TABLE 2
Euler Angle Search Applied to Table 1 Data

Mol. Site Axes used (α, β, γ ) Mol. Site Axes used (α, β, γ )

Gly C2, #1 a∗, b, c (exact) 113, 149, 180 Thr C1 a, b, c (exact) 84, 111, 154
” C2, #1 a∗, b 113, 149, 180 ” a, b 84, 110, 154
” C2, #1 b, c 113, 149, 180 ” b, c 82, 111, 154
” C2, #1 c, a∗ 113, 149, 180 ” c, a 84, 111, 154
” C2, #2 a∗, b, c 113, 31, 0 ” C2 a, b, c (exact) 144, 120, 261
” C2, #2 a∗, b 113, 31, 0 ” a, b 144, 120, 261
” C2, #2 b, c 113, 31, 0 ” b, c 37, 60, 81
” C2, #2 c, a∗ 113, 31, 0 ” c, a 37, 60, 81

GG C1 a∗, b, c (exact) 87, 52, 38 ” C3 a, b, c (exact) 51, 110, 151
” C1 a∗, b 87, 52, 38 ” a, b 51, 110, 151
” C1 b, c 87, 52, 38 ” b, c 51, 110, 151
” C1 c, a∗ 87, 52, 38 ” c, a 51, 110, 151
” N a∗, b, c (exact) 165, 129, 19 ” C4 a, b, c (exact) 1, 147, 71
” N a∗, b 165, 129, 19 ” a, b 1, 147, 71
” N b, c 165, 129, 19 ” b, c 1, 147, 71
” N c, a∗ 165, 129, 19 ” c, a 0, 33, 289
Note. Euler angles determined from rotation about any two crystal axes are compared with those
t
computed from exact numerical diagonalization of

Regarding selection of the correct solution, the choice to be
made is similar to the commonly encountered problem in which
the unit cell contains more than a single structurally equivalent
but magnetically nonequivalent molecule, i.e., symmetry related
shielding tensors. If, for example, the symmetry operation is a
mirror-plane perpendicular to y, then the situation is equivalent
to half of the choices here: two tensors with eigenvectors related
by (x, y, z) and (x, −y, z). In many cases the number of pos-
sibilities is further multiplied if the rotation axes are the crys-
tallographic axes (or a closely related orthogonal frame such
as (a∗, b, c) since the choice of how to combine rotation data
from different axes for the chemically equivalent, magnetically
nonequivalent sites is not unique. For amino acid carbons, these
ambiguities have been resolved by the following experimentally
realized local symmetry rules (7, 14, 18–22):

1. For carboxyl or carboxylate groups, the downfield (least
shielded) component is along the C–CO2 bond and the upfield
(most shielded) component is along the normal to the plane of
the C–CO2 group.

2. For peptide carbonyl carbons (C1), the most shielded com-
ponent is along the peptide OC1N plane normal and the inter-
mediate component is close (∼15◦) to the carbonyl bond.

3. For hydroxyl carbons, the downfield component is along
the C–O bond,

4. For amino acid α-carbons (C2), the most downfield com-
ponent is along the C1C2N plane normal and the intermediate
component bisects the C1–C2–N angle.

5. For methyl groups, the most shielded component is along
the C–CH3 bond.
rizes the results when the possible orientations
le axis analysis of the 13C data from Table I
he experimentally determined tensor.

are compared to the relevant reference vector(s) described above.
Listed are the angular deviations from the reference vectors cal-
culated directly from the scalar product (direction cosine) of the
two vectors compared. When the relevant rule specifies all 3 PAS
component orientations (1, 2, and 4 above), the value listed is
the average of the 3 angles. Small angles indicate that the solu-
tion is close to the symmetry rule. Since the correct orientation
is known here, it is labeled (x, y, z) in Table 3. In all cases,
the correct orientation has the smallest deviation. In three cases,
a second solution is close, but two of these spurious solutions
would likely be eliminated if the rules for hydroxyl and methyl
carbons specified the molecular orientations of 3 rather than a
single shielding tensor component.

The effect of experimental errors in the principal compo-
nents (eigenvalues) on the tensor orientation is determined by

TABLE 3
Angular Differences between Tensor Orientations Based on Sin-

gle Axis Rotation Data (Table I) and Standard Symmetry Rules
(See Text)

(x, y, z) (x, −y, z) (x ′, y, z′) (x ′, −y, z′)

Gly C2 #1 12◦ 41◦ — —
Gly C2 #2 12◦ 41◦ — —
GlyGly C1 10◦ 48◦ 43◦ 32◦
Thr C1 2◦ 7◦ 33◦ 34◦
Thr C2 5◦ 47◦ 41◦ 58◦
Thr C3 4◦ 58◦ 58◦ 8◦
Thr C4 5◦ 8◦ 60◦ 60◦

Note. Rules for C1 and C2 carbons specify 3 PAS component orientations (see

text) and the value listed is the average of the 3 angles between the eigenvec-
tors and the reference vectors. The correct orientation, known here, is labeled
(x, y, z). Only two tensor orientations were found for Gly C2.
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FIG. 1. Standard deviation in eigenvector orientations (degrees) as a func-
tion of standard deviation in principal components (percent of σzz − σxx ). The
curves are as follows: axially symmetric tensor with the unique axis parallel
(solid line), perpendicular (dashed line), and at 45◦ (dashes and dots) relative to
the crystal rotation axis. Also shown, an arbitrarily oriented axially asymmet-
ric tensor (dots). Uncertainties for the two other components, not shown, are
smaller.

Monte Carlo simulation as follows: Given the eigenvalues and
their standard deviations, the eigenvectors (tensor orientation)
are determined for a large number (∼103) of randomly gen-
erated principal components satisfying a normal distribution
with the specified standard deviations (25). The changes in
the three eigenvector orientations are calculated for each ran-
domly generated set of principal components and their standard
deviations are calculated for the simulation. Figure 1 shows
how standard deviations in eigenvector orientations vary with
standard deviations in the principal components for several il-
lustrative cases: an axially symmetric tensor with the unique
axis perpendicular, parallel or at 45◦ relative to the rotation
axis and an axially asymmetric tensor (η = 1) tensor with an
arbitrary orientation relative to the rotation axis. When the
tensor is axially symmetric, the orientation is specified com-
pletely by the eigenvector of the unique component. Uncer-
tainties in this orientation are largest and smallest, respectively,
when the rotation and tensor axes are parallel and separated
by 45◦. For the asymmetric case, all three vector orientations
are needed and the largest uncertainty (from the vector cor-
responding to σyy) is less than but comparable to the worst
axial case. In summary, typical errors in the principal com-

ponents, ≤ 2%, correspond to uncertainties in the orientations
of ≤ 6◦.
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CONCLUSIONS

NMR rotation patterns of a single crystal are the celebrated
method to obtain the orientation of the chemical shielding tensor
in the crystal frame unambiguously. Though almost any amount
of labor and cost would be tolerated for such pristine informa-
tion, not even measurable by X-ray crystallographic methods,
any methods for reducing the cost (in terms of labor, time, and
error) would be highly welcome. In this study we have shown
that, by using independently and much more easily determined
principal values of the chemical shielding tensor, the number
of “classic” single crystal rotation patterns required can be cut
down from three to two. Even in the event one chooses to employ
all the three classic rotations, since the analysis can be carried
out independently about any pair of axes, the number of helpful
checks available aids the analysis to obtain the tensor orienta-
tion. We have also described a method using a single rotation.
In general, four tensor orientations are found and the problem of
eliminating the spurious orientations is the same as is frequently
encountered when determining tensor molecular orientations in
samples with magnetically nonequivalent but structurally equiv-
alent sites. Applying the same symmetry rules used to resolve
this ambiguity is successful in eliminating most of the spuri-
ous orientations. More refined rules based on a larger data base
of shielding tensors and ab initio calculations should improve
the viability of this approach. We expect it will be fruitful in
cases where there are practical problems for rotation about 2 or
3 orthogonal axes.
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